Year 2009
Authors Tien-Fu Chen
Paper Title An Adaptively Dividable Dual-Port BiTCAM for Virus-Detection Processors in Mobile Devices
Journal Title IEEE Journal of Solid-State Circuits
Vol.No 44
Issue.No 5
From 1571
To 1581
Date of Publication 2009-05-02
Abstract Network security for mobile devices is in high demand because of the increasing virus count. Since mobile devices have limited CPU power, dedicated hardware is essential to provide sufficient virus detection performance. A TCAM-based virus-detection unit provides high throughput, but also challenges for low power and low cost. In this paper, an adaptively dividable dual-port BiTCAM (unifying binary and ternary CAMs) is proposed to achieve a high-throughput, low-power, and low-cost virus-detection processor for mobile devices. The proposed dual-port BiTCAM is realized with the dual-port AND-type match-line scheme which is composed of dual-port dynamic AND gates. The dual-port designs reduce power consumption and increase storage efficiency due to shared storage spaces. In addition, the dividable BiTCAM provides high flexibility for regularly updating the virus-database. The BiTCAM achieves a 48% power reduction and a 40% transistor count reduction compared with the design using a conventional single-port TCAM. The implemented 0.13 mum processor performs up to 3 Gbps virus detection with an energy consumption of 0.44 fJ/pattern-byte/scan at peak throughput
Language English